Below is a series of diagrams that can act as analogies for impacts. If the impulse is enacted rigidly (hard tip hammer, steel plate, etc.), the impulse will look something like the far-left figure. High-amplitude (height of the curve), narrow wavelength (width of the curve). This is because the impacted materials respond rigidly to the impulse, i.e. the hammer rebounds from the plate almost instantaneously. Therefore, as a result of the narrow-wavelength impulse, the transmitted waves will have relatively high-frequency (short wavelength) content.
As you use softer and softer impact materials, applying impulses of equal force will appear like the diagrams to the right (smaller amplitude, longer wavelength). The impacted materials are responding less-rigidly to the impulse, so the hammer spends more time on the plate due to the more absorptive nature of the impact. The same amount of energy has been put in (area under the curve), but the amplitude of the input (height of the curve) decreases to compensate for the input duration (width of the curve) caused by the impact absorption of the softer materials. Therefore, as a result of the wide-wavelength impulse, the transmitted waves will have relatively low-frequency (long wavelength) content.
Using a more rigid striker plate (like one made of aluminum) on a hard surface can cause the generated wave frequency to be too high at times given the survey goals, so we suggest using a polyethylene plate on a relatively solid material like asphalt.
Remember: lower frequency -> deeper signal penetration -> decreased signal resolution.