• Products
    • Seismographs
    • Magnetometers
  • Rentals
    • Rental Rates
    • Rentals Contact Form
  • Solutions
    • Engineering and Infrastructure Applications
    • Oil and Gas Exploration
    • Mining and Mineral Exploration
    • Geologic & Research Investigations
    • Environmental/Ground Water Studies
    • UXO Detection
    • Archaeology
    • Security and Detection
    • Orphaned Well Cleanup
  • Software
  • Resources
    • Geoelectrical
    • Magnetic
    • Seismic
  • Support
    • Community Forum
    • Troubleshooting and Theory FAQ
    • Return Material Authorization
    • Support Contact Form
    • Terms and Conditions
  • Company
    • Our History
    • Staff
    • Our Network
    • Careers
  • Contact
  • Forum
  • Payment
  • Forums
  • Members
  • Recent Posts
Forums
Search
 
Notifications
Clear all

Search result for:  id10=WA 0812 2782 5310 Kontraktor Pemasangan Neon Box Vivan Murah Banyubiru Kab Semarang

 Search Phrase:
 Search Type:
Advanced search options
 Search in Forums:
 Search in date period:

 Sort Search Results by:


Page 2 / 2 Prev
# Post Title Result Info Date User Forum
Geode SGOS Timing   2 Relevance 2 years ago Gretchen Schmauder Software
  The time associated with each data point in a SEG-2 data file generated by a Geode is related to the time of the “trigger” event which was instrumental in the production of the file and its content. The Trigger Master and Trigger Distribution The trigger event occurs at the Geode designated within the Controller software as the Trigger Master. Although all Geodes are capable of being Trigger Masters, there must be one and only one Trigger Master in any properly functioning Geode system. The Controller automatically takes care of this requirement when the designation is made by a user, and when the system is established at the time of Controller start-up based on a previous designation (or a default setting in the case of a “new survey”). All other Geodes in the system will have their Trigger Master circuit disabled. A trigger event can be initiated by an external electrical pulse provided to the trigger input connector of the Trigger Master Geode, or by a command sent via Ethernet from the Controller to the Trigger Master (usually for test purposes), but only when all conditions are satisfied to allow data recording. There is also a special trigger initiation situation, called “self-triggering” which will not be discussed further here. Upon acceptance of a trigger event, the Trigger Master will distribute the trigger signal to all Geodes in the system, itself included, via an RS-485 network that resides within the digital interconnect cabling. (Proper termination of this RS-485 network is automatically taken care of by the Controller.) The trigger signal is propagated through the cabling and Geodes at the nominal speed of 70% of the speed of light, or approximately 2.1x10^8 m/sec. The maximum distance of successful propagation depends on a number of factors such as the number of Geodes involved, the noise environment, the quality of the cables, and the acceptable amount of timing uncertainty for the particular application. Distances approaching or exceeding 1km should be given careful attention in this regard. In a 3-D Geode system involving LTUs, each LTU, unlike a Geode, will reconstruct the trigger signal before sending it on, effectively confining the maximum distance issue to each sub-network separated by LTUs. The penalty is an additional delay of about 100nS for each LTU in the route. The External Trigger Circuit The external trigger input is capacitively coupled, with a 2mS time constant, to the midpoint of a resistive voltage divider. The voltage difference between the two ends of the divider constitute a voltage "window", which size is set by the trigger sensitivity parameter and can range from essentially zero at the highest sensitivity, to about +/- 2.5V at the lowest sensitivity. The Geode will trigger (if enabled) if and when the coupled signal exceeds the window, in either direction (i.e., positive or negative going). The signal, after the capacitor, is clamped by diodes to the range between the trigger signal ground and +5VDC. The trigger detector output is disabled when the system is disarmed, during a parameter change, and during a shot, up to the trigger hold-off time after the end of the shot. The trigger hold-off time is a parameter set by the user. Preceding the coupling capacitor (i.e., essentially the node accessible at pin A of the external connector), there is a 3.3K-Ohm pull-up resistor to +5VDC (relative to pin B). Also a fast transient suppressor clamps the input at about +/-14VDC. It is advised that the DC + AC level of any voltage applied to pin A relative to pin B be kept within the range of +/-7V, giving some margin of safety. If a DC voltage somewhat less than +5VDC is applied when the connector is first mated, the instrument may trigger at that moment. But, subsequently, because of the capacitive coupling, it will trigger on the next positive or negative going pulse that exceeds the window level. If the duration of the applied voltage pulse is less than the record length + delay time + hold-off time, then the Geode will effectively be ready to trigger on the same edge of another similar pulse. Sub-sample Synchronization The Geode supports a sub-sample timing synchronization feature used for synchronizing the data acquisition after a trigger event to the distributed trigger signal, so that subsequent time points will be known to within 1/32 (~1/20 at the fastest two sampling rates) sample interval. It does this by increasing the sample interval at the trigger time by 0 to 31/32 of a sample interval in increments of 1/32, so that the first sample after the trigger would represent a time of one sample interval after the trigger event, with a tolerance within 1/32 of a sample interval. The following samples continue from there at the expected intervals. For example, with a selected sampling interval of ¼ mS and a recording delay of 0mS, the first sample in the recorded file for each channel would represent data at 250 to 258uS after the trigger event. This of course potentially introduces a small discontinuity at the time of the trigger, observable depending on the nature of the channel waveform(s). (The zero-phase anti-alias filter will smear the discontinuity into the nearby samples both before and after, consistent with the bandwidth of the filter.) Sub-sample synchronization can be disabled if it is deemed to be detrimental for the particular application, at the expense of losing the 1/32 interval timing accuracy. Timing Errors The principal errors in Geode timing are of two types: those associated with the trigger mechanism and which are static over the duration of the record, and those associated with the time base and which change over the duration of the record. Excluding the trigger propagation delay mentioned above, the trigger timing uncertainty is about 1uS. The known fixed errors have been lumped together and are reported in the SEG-2 file trace headers as channel SKEW. (The actual channel skew is zero, since all channels are effectively sampled simultaneously, but the SKEW value in the header is used as the only place permitting small timing corrections. Note that the SKEW value for every channel is identical.) If the size of this correction is important to the application, the SKEW value should be added to the calculated time points when the data is being processed. The Geode time base has a +/-15ppm stability over temperature (-20C to +70C) and component variations. Thus time drift relative to absolute time and relative to other Geodes is possible. (However, all channels within any Geode enclosure use the same time base, so there is no relative drift between channels in the same enclosure.) Therefore timing uncertainty increases from that existing at the time of the trigger until the time of the next trigger (or end of record). Special Timing Issues Involved with “Continuous” Recording “Continuous” recording is a method that allows unending 100% time coverage with recorded Geode data. It produces a series of time-overlapped records created by the use of a negative time delay set equal to the record length such that each record consists of completed history at the time of the trigger event. This technique circumvents the problem of data transmission overrunning data acquisition. The principle constraint is that the cycle time from trigger to trigger must always be less than the chosen record length. Otherwise, gaps rather than overlap would result. Commonly it is used with GPSderived triggering in order to provide time-stamping of each trigger event. Upon consideration of the above, it will become clear that the time-stamp associated with a particular trigger event will pertain to the data in the following record, not to the data in the record in which the time-stamp is written. This comes about because the trigger event ends the record. Because there is data overlap between records, the precise trigger point in the following record at which the time-stamp applies can be found by comparison of the data values at the end of the former record with those near the beginning of the subsequent record. The overlapping data will be exactly identical in both records (since they are read from the same memory location, twice). The earliest data in the subsequent record that goes beyond the data of the previous record is the data that is one sample interval (assuming sub-sample synchronization is enabled) past the time-stamp. Note well that this comparison must be made independently for at least one channel of each 8-channel Geode board set, because the discrete time at which data values are written to the memory buffer, relative to the trigger event, is a function of each individual board set in the Geode system. Correct GPS Time-Stamping There are differences between various GPS models that can affect accurate time stamping. The 1PPS signal from a GPS has a “timing edge” and return edge, of which only the former is the true whole-second edge. Some models use a rising edge as the timing edge, some the falling edge, and some have it selectable. Consult the GPS manual to determine the definition of its timing edge. As indicated earlier, the Geode can be triggered on either a rising or falling edge. It is important to insure that the Geode is being triggered on the proper edge in order to avoid timing that may be a fraction of a second off. This is expanded upon below. Some GPS units provide a very narrow timing pulse, others one that has a nearly 50/50 duty cycle. For the narrow pulse units, almost certainly it is the leading edge (rising or falling) that is the “timing edge”. This case can be easily handled by using the Geode Trigger Hold-off feature. If a 10-second cycle time is desired, set the Trigger Hold-off time to about 9.5 seconds. In this case, there is a very small chance that the very first trigger could occur on the wrong (trailing) edge, but from then on the leading edge will be used as the triggering edge. If the GPS provides a 50/50 duty cycle edge, and it is not alterable, then the Geode by itself could as easily start on the wrong edge as on the correct timing edge, and continue thusly until restarted. For this case, Geometrics can provide a Trigger Timing Interface Box (TTIB) that will correct the situation. The TTIB can be programmed to respond only to the correct edge (rising or falling), change the polarity if needed, and gate through only one of every N 1PPS pulses, where N is programmable. (The TTIB also incorporates an alarm system that can provide a remote alert if a record is missed.) Another potential issue comes from the variations between GPS models of the time that the serial time string (containing the time value of the associated 1PPS) is issued relative to the 1PPS itself. The Geode Controller attempts to pick the correct serial string based on a calculation involving the known record length, the PC times, and the trigger notification message from the Geodes. But if the GPS issues the serial string at an unusual time (and the time has been seen to vary somewhat with a given GPS unit) then it could pick up the incorrect time, off by 1 second. If rare, it can be subsequently detected and corrected during data processing, but if consistent it may not be easily detected. Again, the TTIB can accommodate the situation by only gating through to the Controller PC the string belonging to the gated-through 1PPS pulse. The Controller Serial Input Time Window can then safely be widened to 2 seconds (assuming the cycle time is more than 2 seconds) if need be, to expand the Controller’s search for the string around the calculated trigger time.
Calculate the "True Amplitude" for waves/vibrations measured on a Geode Seismograph   2 Relevance 2 years ago Gretchen Schmauder Application
  You can use the tape.exe application that was installed on your computer when you installed the Seismodule program. Read in the SEG-file, convert it to ASCII by selecting the File menu and Convert to ASCII. Check the Box to convert to mV. Once you have converted the waveform to ASCII voltages, you can multiply by the sensitivity of the geophone to recover true ground amplitudes. Download Tape Reader. IMPORTANT - Be sure to back up your data files before running this program.
How do you convert a Geode from 2D to 3D use?   2 Relevance 2 years ago Gretchen Schmauder Hardware
  1. Hook up Geode in normal configuration to computer Ethernet Box. 2. Select Start New Survey. 3. Uncheck Line Tap. 4. Uncheck Aux. 5. Select YES to all pop up menus. 6. Locate lower left corner menu: Seismodule List Window. 7. Note what current loader version under LDVER column of table in Seismodule List Window. (Ex. 2.729) 8. In order to change the LDVER, you must first set up the table in column F from N/A to X by doing the following: 9. Select System pull down menu from the upper task bar. 10. Select Test. 11. Select Update System Board Bios. 12. Select I Agree. 13. Select Browse. 14. To set up table to enable loader version update (LDVER) select the file: GEODEFOR3D-1.0.exe. 15. Select Open. 16. Select Start Burning. 17. Select Yes. 18. Cycle power or shut down controller by using the software. 19. Restart the Geode. 20. Repeat necessary steps to get to Seismodule List Window. 21. Verify value in column is now X. 22. Select System pull down menu from the upper task bar. 23. Select Test. 24. Select Update System Board Bios. 25. Select I Agree. 26. Select Browse. 27. Select from Flash Update File Flash3_703&2_42.exe. 28. Select Start Burning. 29. Select Yes. 30. Verify Power LED light on Geode now blinks 3 seconds on 1 second off. 31. Select OK. 32. Cycle power or shut down controller by using the software.
Can a Magnetometer Detect Gold   2 Relevance 2 years ago Gretchen Schmauder General Magnetometer Info
  There are basically three types of "gold": low concentration disseminated gold in ore, placer gold deposits and solid gold such as that associated with treasure. Magnetometers are used to find disseminated gold by its association with mineralized zones which also contain magnetite or other magnetic minerals. Magnetometers are often used in conjunction with airborne electromagnetic surveys to find the conductive ore bodies. Placer gold is the type found in buried stream channels such as the gold which sparked the California gold-rush in 1849. Gold dust and magnetic minerals have been concentrated in river banks over thousands of years. Where there is gold there is often magnetite and therefore the magnetometer can be used to locate placer gold deposits. Gold treasure is a different story and being non-magnetic gold, silver, and other precious minerals are not directly detectable by the magnetometer. The magnetometer can only detect ferrous (iron or steel) objects. If the gold is stored in an iron Box or has iron materials next to the gold (such as colonial ship ballast stones in the marine environment), there is the possibility of detecting the iron material. This is true for land and marine (sunken galleon) gold bullion. The vast majority of target search surveys are performed on a grid in a "lawn mower" back and forth manner to cover the area of interest. Lane spacing is dependent on target size (magnetic mass). At a sensor to target distance of 2 to 3 meters there will need to be at least 1-2 kilograms of iron. This can produce a 1-2 nT anomaly that is detectable in a magnetically clean environment. The ideal environment would be in a plowed farm field or the bottom of the ocean away from human activity i.e., away from a port or harbor. You will probably not be able to detect this small of an anomaly in a city or port location. The more iron mass there is, the better the chance of detecting it. Training to use the magnetometer can take 1-2 days depending on experience with setting up computerized survey equipment and a GPS. Processing the magnetic data requires several days of training and would require a geophysical background to interpret the final maps. We provide free software to make maps and estimate the target depth of burial (inversion). If you are unfamiliar with this procedure, we would recommend that you find a local geotechnical firm to look at the data to determine if there are anomalies that should be investigated further. Remembering that non-ferrous materials do not cause anomalies (gold, silver, copper, brass, aluminum, gems) you will be looking for anomalies either associated with the container OR associated with ground disturbance (i.e., gravesite). In this way some anomalies can be detected where there has been an excavation such as a gravesite. In order to understand the process more fully, we strongly suggest that you download and read the Applications Manual for Portable Magnetometers. Other additional resources are available. Understanding how the magnetometer functions and how the earth’s field responds to distortions due to ferrous materials will help you make good decisions about how to interpret and use the data to direct recovery or exploration efforts.
G-882 Magnetometer will no longer communicate with a computer   2 Relevance 2 years ago Gretchen Schmauder Hardware
  You will need to test the magnetometer on the dry deck or in your shop. Connect the G882 directly to the junction Box and use the black power supply Geometrics provided. Verify operation. If working go to step 4. If the magnetometer is not working, then there is a hardware failure. There is nothing that can be done in the field at this point. Arrange to send it in by requesting an RMA number from our RMA page. If the magnetometer is working then "dies" it would be useful to have the data from the "diagnostic survey". Review this document: Diagnostic Surveys for CM221 Counter Equipped Magnetometers r-2. Connect on board power supply (if different than the supply already checked) Verify operation. If it fails record Diagnostic Survey. If working proceed. Connect Deck cable (if applicable). Verify operation. If it fails record Diagnostic Survey. If working proceed. Connect Tow Cable. Verify operation. If it fails record Diagnostic Survey. If working proceed. Deploy magnetometer under normal configuration. Begin a Diagnostic Survey. If the mag doesn't work under tow then there is a problem with the tow cable/interconnections. Please take these steps and record the data when a failure occurs. (Best to record data all the time and then when it fails send the data to our Support Team, you can contact them through the support contact form. Make sure you are specific as to the conditions/configuration if/when it failed.)
Choosing the Right Lithium Polymer Battery for your MagArrow   2 Relevance 2 years ago Gretchen Schmauder Hardware
  The MagArrow uses a 3 cell Lithium Polymer battery to power the MagArrow during surveys. The two main requirements for the battery are that it must fit into the battery compartment, and it must be nonmagnetic. Non-Magnetic Batteries: Some types of Lithium Polymer batteries are extremely magnetic. This is because the cell-to-cell connections are made with nickel strips (nickel is extremely magnetic). This makes them unsuitable for use in the MagArrow since they will interfere with the background magnetic field that is being measured. Whether or not the batteries are magnetic is not something that appears on the data sheet, so it is important to choose batteries of a particular construction form factor that in practice has been shown to have a very low magnetic signature. Examples of this battery type will be shown below. There are many brand names for this battery type, and the brand names seems to change frequently. Evaluating the Magnetic Properties of a Battery: Batteries should be measured for magnetic signature before using them. This is especially true when trying a new battery brand just to be sure the battery is not going to affect the survey data. To perform this test you will need to start a survey with a stationary MagArrow pointing north-south on a nonmagnetic platform (wooden sawhorses, cardboard Box, etc). Hold the battery to be tested immediately over the battery compartment and rotate it in all orientations. Download the data and look for variations in the magnetic field that correlate with the battery rotation. There shouldn't be any correlation above 1 nT peak to peak. Make sure the operator is nonmagnetic when doing this test (shoes, belts, watches, cell phones, keys, etc. can all corrupt the results). Battery Size and Shape: The correct batteries are rectangular in shape and measure roughly 105x34x24mm. They are made from 3 flat cells stacked up measuring 11.1 volts nominal. They should be between 1800 and 2200 mAh (milliamp-hour). Higher capacity batteries will not physically fit in the battery compartment. Lower capacity batteries will work, but with a reduced run time. One 1800 mAh battery will run the MagArrow for about two hours. The MagArrow power connector is XT-60 so the battery must match. There are other power connector types, but XT-60 is commonly used. The 4-pin balance port connector is a JST-XH4 connector (though this is standard on most batteries). Where to Find Batteries: If you are in an area that doesn't have strict controls on shipping Lithium Polymer batteries, then Amazon.com is a good source. Another good source is hobby stores, or anyplace that sells radio-controlled toy cars, boats, or airplanes. This is typically where this style of battery is used the most. What do the Battery Specifications Mean? 3S: This means it is a stack of three Li-Po cells Voltage: A fully charged 3 cell Li-Po battery measures 12.6 volts. A depleted battery will measure 9.6 volts. Thus, the voltage for this battery is typically labeled as 11.1 volt (the average of 12.6 and 9.6 volts. 35C (or any other "C" value): This is a rating on how much current can be safely drawn from the battery. To get the value in amps, take the milliamp-hour rating and divide by 1000 (to get amp-hours), and then multiply by the "C" value. For a 2200 mAh battery with a 35C rating multiply the 2.2 amp-hour capacity (2200 mAh / 1000) times the C value of 35, which gives a maximum discharge current of 77 amps. The MagArrow draws about 0.6 amps, so any C value is fine - even if is down to 0.5. Battery Chargers: Most battery chargers being sold now are universal chargers which support a variety of rechargeable battery chemistries and output connectors. They come in many sizes and shapes, but most of them operate identically because the internal circuitry is the same. Most chargers will charge at a much faster rate than the MagArrow discharges them, so you technically only need two batteries in the field. A nice feature to look for is the ability to power the charger off 12V as well as with AC power. This will allow charging in the field off a car battery. Be sure to charge in batteries in "Balanced Charge" mode using the battery balance JST-XH connector. This allows more charge current into cells that are more deeply discharged than the others and ensures that the battery gets all three cells completely charged. Battery Safety: Lithium Polymer batteries are small and light but store a tremendous amount of energy inside. This is good for running equipment for long periods of time between charges, but it also means that if something goes wrong and it releases all its energy at once it can be a serious fire hazard. Never charge a lithium battery unattended, charge only in a fireproof location. Batteries that are swollen or damaged should not be used. Dispose of these per local regulations. Be sure to follow all regulations for shipping or hand carrying Li-Po batteries. This may include packaging and labeling requirements, limiting the number of batteries, and discharging the batteries to 30% capacity before shipping. Do not discharge the battery below 9.6 volts (3.2 volts per cell). This damages the battery and could result in destructive decomposition and fire. If a battery that is discharged below a safe level is placed on the battery charger it will refuse to charge it. Batteries that are discharged below 9.6V should be removed from service and disposed of according to local regulations. To download a copy of this document as a PDF, click here. Some example batteries are shown below:
Choosing the Right Lithium Polymer Battery for your MagEx   2 Relevance 2 years ago Gretchen Schmauder Hardware
  The MagEx uses a 3 cell Lithium Polymer battery to power the MagEx during surveys. The two main requirements for the battery are that it must fit into the battery compartment, and it must be nonmagnetic. Non-Magnetic Batteries: Some types of Lithium Polymer batteries are extremely magnetic. This is because the cell-to-cell connections are made with nickel strips (nickel is extremely magnetic). This makes them unsuitable for use in the MagEx since they will interfere with the background magnetic field that is being measured. Whether or not the batteries are magnetic is not something that appears on the data sheet, so it is important to choose batteries of a particular construction form factor that in practice has been shown to have a very low magnetic signature. Examples of this battery type will be shown below. There are many brand names for this battery type, and the brand names seems to change frequently. Evaluating the Magnetic Properties of a Battery: Batteries should be measured for magnetic signature before using them. This is especially true when trying a new battery brand just to be sure the battery is not going to affect the survey data. To perform this test you will need to start a survey with a stationary MagEx pointing north-south on a nonmagnetic platform (wooden sawhorses, cardboard Box, etc). Hold the battery to be tested immediately over the battery compartment and rotate it in all orientations. Download the data and look for variations in the magnetic field that correlate with the battery rotation. There shouldn't be any correlation above 1 nT peak to peak. Make sure the operator is nonmagnetic when doing this test (shoes, belts, watches, cell phones, keys, etc. can all corrupt the results). Battery Size and Shape: The correct batteries are rectangular in shape and measure roughly 105x34x24mm. They are made from 3 flat cells stacked up measuring 11.1 volts nominal. They should be between 1800 and 6000 mAh (milliamp-hour). Higher capacity batteries will not physically fit in the battery compartment. Lower capacity batteries will work, but with a reduced run time. One 1800 mAh battery will run the MagEx for about two hours. The MagEx power connector is XT-60 so the battery must match. There are other power connector types, but XT-60 is commonly used. The 4-pin balance port connector is a JST-XH4 connector (though this is standard on most batteries). Where to Find Batteries: If you are in an area that doesn't have strict controls on shipping Lithium Polymer batteries, then Amazon.com is a good source. Another good source is hobby stores, or anyplace that sells radio-controlled toy cars, boats, or airplanes. This is typically where this style of battery is used the most. What do the Battery Specifications Mean? 3S: This means it is a stack of three Li-Po cells Voltage: A fully charged 3 cell Li-Po battery measures 12.6 volts. A depleted battery will measure 9.6 volts. Thus, the voltage for this battery is typically labeled as 11.1 volt (the average of 12.6 and 9.6 volts. 35C (or any other "C" value): This is a rating on how much current can be safely drawn from the battery. To get the value in amps, take the milliamp-hour rating and divide by 1000 (to get amp-hours), and then multiply by the "C" value. For a 2200 mAh battery with a 35C rating multiply the 2.2 amp-hour capacity (2200 mAh / 1000) times the C value of 35, which gives a maximum discharge current of 77 amps. The MagEx draws about 0.6 amps, so any C value is fine - even if is down to 0.5. Battery Chargers: Most battery chargers being sold now are universal chargers which support a variety of rechargeable battery chemistries and output connectors. They come in many sizes and shapes, but most of them operate identically because the internal circuitry is the same. Most chargers will charge at a much faster rate than the MagEx discharges them, so you technically only need two batteries in the field. A nice feature to look for is the ability to power the charger off 12V as well as with AC power. This will allow charging in the field off a car battery. Be sure to charge in batteries in "Balanced Charge" mode using the battery balance JST-XH connector. This allows more charge current into cells that are more deeply discharged than the others and ensures that the battery gets all three cells completely charged. Battery Safety: Lithium Polymer batteries are small and light but store a tremendous amount of energy inside. This is good for running equipment for long periods of time between charges, but it also means that if something goes wrong and it releases all its energy at once it can be a serious fire hazard. Never charge a lithium battery unattended, charge only in a fireproof location. Batteries that are swollen or damaged should not be used. Dispose of these per local regulations. Be sure to follow all regulations for shipping or hand carrying Li-Po batteries. This may include packaging and labeling requirements, limiting the number of batteries, and discharging the batteries to 30% capacity before shipping. Do not discharge the battery below 9.6 volts (3.2 volts per cell). This damages the battery and could result in destructive decomposition and fire. If a battery that is discharged below a safe level is placed on the battery charger it will refuse to charge it. Batteries that are discharged below 9.6V should be removed from service and disposed of according to local regulations. Some example batteries are shown below:
Page 2 / 2 Prev
Share:
Forum Information
Recent Posts
Unread Posts
Tags
  • 86 Forums
  • 224 Topics
  • 311 Posts
  • 3 Online
  • 193 Members
Our newest member: Hans Vrugt
Latest Post: MagEditor instructional video is now online
Forum Icons: Forum contains no unread posts Forum contains unread posts
Topic Icons: Not Replied Replied Active Hot Sticky Unapproved Solved Private Closed

Powered by wpForo  Powered by wpForo version 2.4.12


Products

  • Seismographs
  • Magnetometers
  • Rentals

Company

  • Company
  • Careers

News

  • News
  • Events

Contact

  • +1 (408) 954-0522
  • 2190 Fortune Drive
    San Jose, CA 95131 U.S.A.
Privacy Policy
©2025 Geometrics. All Rights Reserved