Notifications
Clear all
Search result for: id10=WA 0859 3970 0884 Biaya Bikin Canopy Atap Besi Hollow Jumapolo Karanganyar
| # | Post Title | Result Info | Date | User | Forum |
| Finding lost MagArrow II with a new MagArrow II | 6 Relevance | 5 months ago | Muhammad Devandra | Hardware | |
| Hello everyone, my name is Devan, and I would like to open a discussion about finding a lost MagArrow. To give you some background, I lost my MagArrow II while it was mounted below the DJI M400 during a flight mission in a highly dense forest. We have the drone flight log, which indicates that it was stuck in a tree within a 50 m radius of the last known location. We have searched the whole area, but due to a highly dense forest and steep terrain, it was very difficult to find the MagArrow II and the drone on foot. For more than a month, I presume it was still perched within the tree Canopy. And now we have bought a new MagArrow II to continue our survey. In this case, I desperately want to find and retrieve the lost MagArrow using the new device. I have an idea that if I conduct a 5 m spacing grid in both East-West and North-South directions within a 100-meter radius of the last known location, we could eventually narrow down our perimeter by finding an anomaly that indicates the lost device. Therefore, I have a few questions:1. How magnetic is the drone and the MagArrow II?2. Is it feasible to find the old MagArrow with the new MagArrow with the stated method? Alternatively, do you have any effective suggestions for a different approach? I appreciate any insights you can provide. Thank you! | |||||
| How Far Can a Magnetometer 'See'? | 6 Relevance | 3 years ago | Gretchen Schmauder | General Magnetometer Info | |
| Total field magnetometers like the optically pumped cesium magnetometer are passive devices, they do not send out waves or pulses. They measure distortions in the earth’s normally homogenous magnetic field and can sense distortions due to ferrous objects at great distances. The basic rule of thumb is that one ton (1000 Kg) of steel or iron will give us a 1nT anomaly at 100 ft. or 30m. Since the amount of distortion falls off as the cube with distance (compare a metal detector which falls off as the inverse 6th power!) and is linear with mass, every time we cut the distance in half, we can see 1/8th the mass. Therefore, we can sense 250 lbs. (100kg) at 50 feet (15m), or 30lbs (15kg) at 25 feet (8m), or 4lbs (2kg) at 12 feet (4m). However this is not the whole story. The factors given above are for induced magnetic fields only. Many targets also have remnant or permanent magnetic effects (meaning they have become magnetized either in production or by the earth’s field) and can therefore have larger anomalies by a factor of 3 or 5 or more. Also many Hollow objects like barrels or other tubular structures appear as though they are solid due to self-shielding from the earth’s field, and thus have much larger anomalies than their mass would predict alone. Pipes fall off as the inverse square and are thus detectable at even greater distances. Please see our Applications Manual for Portable Magnetometers for more information. | |||||